Baseline
Bases: BaseConfig
Evaluates baseline models on a given dataset.
This class loads, preprocesses, and evaluates a set of baseline models on a specified dataset. The baseline models include a Random Forest, Logistic Regression, and a Dummy Classifier, which are trained and evaluated on split data, returning a summary of performance metrics for each model.
Inherits
BaseConfig
: Provides configuration settings for data processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task
|
str
|
Task name used to determine the classification type. |
required |
encoding
|
str
|
Encoding type for categorical columns. |
required |
random_state
|
int
|
Random seed for reproducibility. Defaults to 0. |
0
|
lr_solver
|
str
|
Solver used by Logistic Regression. Defaults to 'saga'. |
'saga'
|
dummy_strategy
|
str
|
Strategy for DummyClassifier, defaults to 'prior'. |
'prior'
|
models
|
List[Tuple[str, object]]
|
List of models to benchmark. If not provided, default models are initialized. |
None
|
n_jobs
|
int
|
Number of parallel jobs. Defaults to -1. |
-1
|
path
|
Path
|
Path to the directory containing processed data files. Defaults to Path("data/processed/processed_data.csv"). |
Path('data/processed/processed_data.csv')
|
Attributes:
Name | Type | Description |
---|---|---|
classification |
str
|
Specifies classification type ('binary' or 'multiclass') based on the task. |
resampler |
Resampler
|
Strategy for resampling data during training/testing split. |
dataloader |
ProcessedDataLoader
|
Loader for processing and transforming the dataset. |
dummy_strategy |
str
|
Strategy used by the DummyClassifier, default is 'prior'. |
lr_solver |
str
|
Solver for Logistic Regression, default is 'saga'. |
random_state |
int
|
Random seed for reproducibility, default is 0. |
models |
List[Tuple[str, object]]
|
List of models to benchmark, each represented as a tuple containing the model's name and the initialized model object. |
path |
Path
|
Path to the directory containing processed data files. |
Methods:
Name | Description |
---|---|
train_baselines |
Trains and returns baseline models with test data. |
baseline |
Trains and evaluates each model in the models list, returning a DataFrame with evaluation metrics. |
Example
# Initialize baseline evaluation for pocket closure task
baseline = Baseline(
task="pocketclosure",
encoding="one_hot",
random_state=42,
lr_solver="saga",
dummy_strategy="most_frequent"
)
# Evaluate baseline models and display results
results_df = baseline.baseline()
print(results_df)
Source code in periomod/benchmarking/_baseline.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
__init__(task, encoding, random_state=0, lr_solver='saga', dummy_strategy='prior', models=None, n_jobs=-1, path=Path('data/processed/processed_data.csv'))
¶
Initializes the Baseline class with default or user-specified models.
Source code in periomod/benchmarking/_baseline.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
baseline()
¶
Trains and evaluates each model in the models list on the given dataset.
This method loads and transforms the dataset, splits it into training and
testing sets, and evaluates each model in the self.models
list. Metrics
such as predictions and probabilities are computed and displayed.
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame containing the evaluation metrics for each baseline model, with model names as row indices. |
Source code in periomod/benchmarking/_baseline.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
train_baselines()
¶
Trains each model in the models list and returns related data splits.
Returns:
Name | Type | Description |
---|---|---|
Tuple |
Tuple[Dict[Tuple[str, str], Any], DataFrame, Series]
|
|
Source code in periomod/benchmarking/_baseline.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|