EvaluatorMethods
Bases: BaseConfig
Base class that contains methods for ModelEvalutor.
Inherits
BaseConfig
: Provides base configuration settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
DataFrame
|
The test dataset features. |
required |
y
|
Series
|
The test dataset labels. |
required |
model
|
BaseEstimator
|
A trained sklearn model instance for single-model evaluation. |
required |
encoding
|
Optional[str]
|
Encoding type for categorical features, e.g., 'one_hot' or 'target', used for labeling and grouping in plots. |
required |
aggregate
|
bool
|
If True, aggregates the importance values of multi-category encoded features for interpretability. |
required |
Attributes:
Name | Type | Description |
---|---|---|
X |
DataFrame
|
Holds the test dataset features for evaluation. |
y |
Series
|
Holds the test dataset labels for evaluation. |
model |
Optional[BaseEstimator]
|
The primary model instance used for evaluation, if single-model evaluation is performed. |
encoding |
Optional[str]
|
Indicates the encoding type used, which impacts plot titles and feature grouping in evaluations. |
aggregate |
bool
|
Indicates whether to aggregate importance values of multi-category encoded features, enhancing interpretability in feature importance plots. |
Methods:
Name | Description |
---|---|
brier_scores |
Calculates Brier score for each instance in the evaluator's dataset based on the model's predicted probabilities. Returns series of Brier scores indexed by instance. |
model_predictions |
Generates model predictions for evaluator's feature set, applying threshold-based binarization if specified, and returns predictions as a series indexed by instance. |
Source code in periomod/evaluation/_baseeval.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
|
__init__(X, y, model, encoding, aggregate)
¶
Initialize the FeatureImportance class.
Source code in periomod/evaluation/_baseeval.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
brier_scores()
¶
Calculates Brier scores for each instance in the evaluator's dataset.
Returns:
Name | Type | Description |
---|---|---|
Series |
Series
|
Brier scores for each instance. |
Source code in periomod/evaluation/_baseeval.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
model_predictions()
¶
Generates model predictions for the evaluator's feature set.
Returns:
Name | Type | Description |
---|---|---|
pred |
Series
|
Predicted labels as a series. |
Source code in periomod/evaluation/_baseeval.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|