Trainer
Bases: BaseTrainer
Trainer class for supervised machine learning model training.
Extends functionality to support MLP training with early stopping, threshold optimization, and performance evaluation based on specified criteria. The Trainer class is compatible with both binary and multiclass classification, with options for cross-validation and hyperparameter tuning.
Inherits
BaseTrainer
: Base class that implements evaluation methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classification
|
str
|
Specifies the type of classification ('binary' or 'multiclass'). |
required |
criterion
|
str
|
Defines the performance criterion to optimize (e.g., 'f1' or 'brier_score'). |
required |
tuning
|
Optional[str]
|
Specifies the tuning method ('holdout' or 'cv') or None. |
required |
hpo
|
Optional[str]
|
Specifies the hyperparameter optimization method. |
required |
mlp_training
|
Optional[bool]
|
Flag to indicate if a separate MLP training procedure with early stopping is to be used. Defaults to True |
None
|
threshold_tuning
|
Optional[bool]
|
Determines if threshold tuning is performed for binary classification when the criterion is "f1". |
None
|
Attributes:
Name | Type | Description |
---|---|---|
classification |
str
|
Type of classification ('binary' or 'multiclass'). |
criterion |
str
|
Performance criterion to optimize ('f1', 'brier_score' or 'macro_f1'). |
tuning |
Optional[str]
|
Tuning method ('holdout' or 'cv') or None. |
hpo |
Optional[str]
|
Hyperparameter optimization method if specified. |
mlp_training |
Optional[bool]
|
Indicates if MLP training with early stopping is applied. Defaults to None. |
threshold_tuning |
Optional[bool]
|
Specifies if threshold tuning is performed for binary classification when the criterion is 'f1'. Defaults to Noen. |
Methods:
Name | Description |
---|---|
train |
Trains a machine learning model, handling custom logic for MLP and standard models. |
train_mlp |
Trains an MLPClassifier with early stopping, adapting based on classification type and criterion. |
train_final_model |
Trains the final model on resampled data, returning model and metrics. |
Inherited Methods
evaluate
: Determines model performance based on the criterion.optimize_threshold
: Aggregates predictions across CV folds to optimize the decision threshold.evaluate_cv
: Evaluates a model's performance on a CV fold.
Example
from periomod.training import Trainer
from sklearn.ensemble import RandomForestClassifier
trainer = Trainer(
classification="binary", criterion="f1", tuning="cv", hpo="hebo"
)
# Use Resampler to obtain splits
score, trained_model, threshold = trainer.train(
model=RandomForestClassifier,
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
)
print(f"Score: {score}, Optimal Threshold: {threshold}")
from sklearn.neural_network import MLPClassifier
score, trained_mlp, threshold = trainer.train_mlp(
mlp_model=MLPClassifier,
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
final=True,
)
print(f"MLP Validation Score: {score}, Optimal Threshold: {threshold}")
Source code in periomod/training/_trainer.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
__init__(classification, criterion, tuning, hpo, mlp_training=None, threshold_tuning=None)
¶
Initializes the Trainer with classification type and criterion.
Source code in periomod/training/_trainer.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
train(model, X_train, y_train, X_val, y_val)
¶
Trains either an MLP model with custom logic or a standard model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Any
|
The machine learning model to be trained. |
required |
X_train
|
DataFrame
|
Training features. |
required |
y_train
|
Series
|
Training labels. |
required |
X_val
|
DataFrame
|
Validation features. |
required |
y_val
|
Series
|
Validation labels. |
required |
Returns:
Name | Type | Description |
---|---|---|
Tuple |
Tuple[float, object, Union[float, None]]
|
The evaluation score, trained model, and the best threshold. |
Source code in periomod/training/_trainer.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
train_final_model(df, resampler, model, sampling, factor, n_jobs, seed, test_size, verbose=True)
¶
Trains the final model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The dataset used for model evaluation. |
required |
resampler
|
Resampler
|
Resampling class. |
required |
model
|
sklearn estimator
|
The machine learning model used for evaluation. |
required |
sampling
|
str
|
The type of sampling to apply. |
required |
factor
|
float
|
The factor by which to upsample or downsample. |
required |
n_jobs
|
int
|
The number of parallel jobs to run for evaluation. |
required |
seed
|
int
|
Seed for splitting. |
required |
test_size
|
float
|
Size of train test split. |
required |
verbose
|
bool
|
verbose during model evaluation process if set to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
A dictionary containing the trained model and metrics. |
Source code in periomod/training/_trainer.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
train_mlp(mlp_model, X_train, y_train, X_val, y_val, final=False, tol=0.0001, n_iter_no_change=5)
¶
Trains MLPClassifier with early stopping and evaluates performance.
Applies evaluation for both binary and multiclass classification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mlp_model
|
MLPClassifier
|
The MLPClassifier to be trained. |
required |
X_train
|
DataFrame
|
Training features. |
required |
y_train
|
Series
|
Training labels. |
required |
X_val
|
DataFrame
|
Validation features. |
required |
y_val
|
Series
|
Validation labels. |
required |
final
|
bool
|
Flag for final model training. |
False
|
tol
|
float
|
Tolerance for improvement. Defaults to 0.0001. |
0.0001
|
n_iter_no_change
|
int
|
Iterations without improvement in criterion for early stopping. Defaults to 5. |
5
|
Returns:
Name | Type | Description |
---|---|---|
Tuple |
Tuple[float, MLPClassifier, Union[float, None]]
|
Best validation score, trained MLPClassifier, and optimal threshold (None for multiclass or if criterion is "brier_score"). |
Source code in periomod/training/_trainer.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|