Skip to content

Trainer

Bases: BaseTrainer

Trainer class for supervised machine learning model training.

Extends functionality to support MLP training with early stopping, threshold optimization, and performance evaluation based on specified criteria. The Trainer class is compatible with both binary and multiclass classification, with options for cross-validation and hyperparameter tuning.

Inherits
  • BaseTrainer: Base class that implements evaluation methods.

Parameters:

Name Type Description Default
classification str

Specifies the type of classification ('binary' or 'multiclass').

required
criterion str

Defines the performance criterion to optimize (e.g., 'f1' or 'brier_score').

required
tuning Optional[str]

Specifies the tuning method ('holdout' or 'cv') or None.

required
hpo Optional[str]

Specifies the hyperparameter optimization method.

required
mlp_training Optional[bool]

Flag to indicate if a separate MLP training procedure with early stopping is to be used. Defaults to True

None
threshold_tuning Optional[bool]

Determines if threshold tuning is performed for binary classification when the criterion is "f1".

None

Attributes:

Name Type Description
classification str

Type of classification ('binary' or 'multiclass').

criterion str

Performance criterion to optimize ('f1', 'brier_score' or 'macro_f1').

tuning Optional[str]

Tuning method ('holdout' or 'cv') or None.

hpo Optional[str]

Hyperparameter optimization method if specified.

mlp_training Optional[bool]

Indicates if MLP training with early stopping is applied. Defaults to None.

threshold_tuning Optional[bool]

Specifies if threshold tuning is performed for binary classification when the criterion is 'f1'. Defaults to Noen.

Methods:

Name Description
train

Trains a machine learning model, handling custom logic for MLP and standard models.

train_mlp

Trains an MLPClassifier with early stopping, adapting based on classification type and criterion.

train_final_model

Trains the final model on resampled data, returning model and metrics.

Inherited Methods
  • evaluate: Determines model performance based on the criterion.
  • optimize_threshold: Aggregates predictions across CV folds to optimize the decision threshold.
  • evaluate_cv: Evaluates a model's performance on a CV fold.
Example
from periomod.training import Trainer
from sklearn.ensemble import RandomForestClassifier

trainer = Trainer(
    classification="binary", criterion="f1", tuning="cv", hpo="hebo"
    )

# Use Resampler to obtain splits
score, trained_model, threshold = trainer.train(
    model=RandomForestClassifier,
    X_train=X_train,
    y_train=y_train,
    X_val=X_val,
    y_val=y_val,
)
print(f"Score: {score}, Optimal Threshold: {threshold}")

from sklearn.neural_network import MLPClassifier

score, trained_mlp, threshold = trainer.train_mlp(
    mlp_model=MLPClassifier,
    X_train=X_train,
    y_train=y_train,
    X_val=X_val,
    y_val=y_val,
    final=True,
)
print(f"MLP Validation Score: {score}, Optimal Threshold: {threshold}")
Source code in periomod/training/_trainer.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class Trainer(BaseTrainer):
    """Trainer class for supervised machine learning model training.

    Extends functionality to support MLP training with early stopping,
    threshold optimization, and performance evaluation based on specified
    criteria. The Trainer class is compatible with both binary and multiclass
    classification, with options for cross-validation and hyperparameter
    tuning.

    Inherits:
        - `BaseTrainer`: Base class that implements evaluation methods.

    Args:
        classification (str): Specifies the type of classification ('binary'
            or 'multiclass').
        criterion (str): Defines the performance criterion to optimize (e.g.,
            'f1' or 'brier_score').
        tuning (Optional[str]): Specifies the tuning method ('holdout' or
            'cv') or None.
        hpo (Optional[str]): Specifies the hyperparameter optimization method.
        mlp_training (Optional[bool]): Flag to indicate if a separate MLP training
            procedure with early stopping is to be used. Defaults to True
        threshold_tuning (Optional[bool]): Determines if threshold tuning is performed
            for binary classification when the criterion is "f1".

    Attributes:
        classification (str): Type of classification ('binary' or 'multiclass').
        criterion (str): Performance criterion to optimize
            ('f1', 'brier_score' or 'macro_f1').
        tuning (Optional[str]): Tuning method ('holdout' or 'cv') or None.
        hpo (Optional[str]): Hyperparameter optimization method if specified.
        mlp_training (Optional[bool]): Indicates if MLP training with early stopping is
            applied. Defaults to None.
        threshold_tuning (Optional[bool]): Specifies if threshold tuning is performed
            for binary classification when the criterion is 'f1'. Defaults to Noen.

    Methods:
        train: Trains a machine learning model, handling custom logic for
            MLP and standard models.
        train_mlp: Trains an MLPClassifier with early stopping, adapting
            based on classification type and criterion.
        train_final_model: Trains the final model on resampled data,
            returning model and metrics.

    Inherited Methods:
        - `evaluate`: Determines model performance based on the criterion.
        - `optimize_threshold`: Aggregates predictions across CV folds to
          optimize the decision threshold.
        - `evaluate_cv`: Evaluates a model's performance on a CV fold.

    Example:
        ```
        from periomod.training import Trainer
        from sklearn.ensemble import RandomForestClassifier

        trainer = Trainer(
            classification="binary", criterion="f1", tuning="cv", hpo="hebo"
            )

        # Use Resampler to obtain splits
        score, trained_model, threshold = trainer.train(
            model=RandomForestClassifier,
            X_train=X_train,
            y_train=y_train,
            X_val=X_val,
            y_val=y_val,
        )
        print(f"Score: {score}, Optimal Threshold: {threshold}")

        from sklearn.neural_network import MLPClassifier

        score, trained_mlp, threshold = trainer.train_mlp(
            mlp_model=MLPClassifier,
            X_train=X_train,
            y_train=y_train,
            X_val=X_val,
            y_val=y_val,
            final=True,
        )
        print(f"MLP Validation Score: {score}, Optimal Threshold: {threshold}")
        ```
    """

    def __init__(
        self,
        classification: str,
        criterion: str,
        tuning: Optional[str],
        hpo: Optional[str],
        mlp_training: Optional[bool] = None,
        threshold_tuning: Optional[bool] = None,
    ) -> None:
        """Initializes the Trainer with classification type and criterion."""
        super().__init__(
            classification=classification,
            criterion=criterion,
            tuning=tuning,
            hpo=hpo,
            mlp_training=mlp_training,
            threshold_tuning=threshold_tuning,
        )

    def train(
        self,
        model: Any,
        X_train: pd.DataFrame,
        y_train: pd.Series,
        X_val: pd.DataFrame,
        y_val: pd.Series,
    ) -> Tuple[float, object, Union[float, None]]:
        """Trains either an MLP model with custom logic or a standard model.

        Args:
            model (Any): The machine learning model to be trained.
            X_train (pd.DataFrame): Training features.
            y_train (pd.Series): Training labels.
            X_val (pd.DataFrame): Validation features.
            y_val (pd.Series): Validation labels.

        Returns:
            Tuple: The evaluation score, trained model, and the best threshold.
        """
        if isinstance(model, MLPClassifier) and self.mlp_training:
            score, model, best_threshold = self.train_mlp(
                mlp_model=model,
                X_train=X_train,
                y_train=y_train,
                X_val=X_val,
                y_val=y_val,
                final=self.mlp_training,
            )
        else:
            model.fit(X_train, y_train)
            probs = get_probs(model=model, classification=self.classification, X=X_val)
            best_threshold = None

            if self.classification == "binary" and (
                self.tuning == "cv" or self.hpo == "hebo"
            ):
                score, _ = self.evaluate(y=y_val, probs=probs, threshold=False)
            else:
                score, best_threshold = self.evaluate(
                    y=y_val, probs=probs, threshold=self.threshold_tuning
                )

        return score, model, best_threshold

    def train_mlp(
        self,
        mlp_model: MLPClassifier,
        X_train: pd.DataFrame,
        y_train: pd.Series,
        X_val: pd.DataFrame,
        y_val: pd.Series,
        final: bool = False,
        tol: float = 0.0001,
        n_iter_no_change: int = 5,
    ) -> Tuple[float, MLPClassifier, Union[float, None]]:
        """Trains MLPClassifier with early stopping and evaluates performance.

        Applies evaluation for both binary and multiclass classification.

        Args:
            mlp_model (MLPClassifier): The MLPClassifier to be trained.
            X_train (pd.DataFrame): Training features.
            y_train (pd.Series): Training labels.
            X_val (pd.DataFrame): Validation features.
            y_val (pd.Series): Validation labels.
            final (bool): Flag for final model training.
            tol (float): Tolerance for improvement. Defaults to 0.0001.
            n_iter_no_change (int): Iterations without improvement in criterion for
                early stopping. Defaults to 5.

        Returns:
            Tuple: Best validation score, trained MLPClassifier, and optimal threshold
                (None for multiclass or if criterion is "brier_score").
        """
        best_val_score = (
            -float("inf") if self.criterion in ["f1", "macro_f1"] else float("inf")
        )
        best_threshold = None
        no_improvement_count = 0

        for _ in range(mlp_model.max_iter):
            mlp_model.partial_fit(X_train, y_train, classes=np.unique(y_train))

            probs = get_probs(
                model=mlp_model, classification=self.classification, X=X_val
            )
            if self.classification == "binary":
                if final or (self.tuning == "cv" or self.hpo == "hebo"):
                    score, _ = self.evaluate(y=y_val, probs=probs, threshold=False)
            else:
                score, best_threshold = self.evaluate(
                    y=y_val, probs=probs, threshold=self.threshold_tuning
                )

            if self.criterion in ["f1", "macro_f1"]:
                improvement = score > best_val_score + tol
            else:
                improvement = score < best_val_score - tol

            if improvement:
                best_val_score = score
                no_improvement_count = 0
            else:
                no_improvement_count += 1

            if no_improvement_count >= n_iter_no_change:
                break

        return best_val_score, mlp_model, best_threshold

    def train_final_model(
        self,
        df: pd.DataFrame,
        resampler: Resampler,
        model: Tuple,
        sampling: Optional[str],
        factor: Optional[float],
        n_jobs: int,
        seed: int,
        test_size: float,
        verbose: bool = True,
    ) -> dict:
        """Trains the final model.

        Args:
            df (pandas.DataFrame): The dataset used for model evaluation.
            resampler: Resampling class.
            model (sklearn estimator): The machine learning model used for evaluation.
            sampling (str): The type of sampling to apply.
            factor (float): The factor by which to upsample or downsample.
            n_jobs (int): The number of parallel jobs to run for evaluation.
            seed (int): Seed for splitting.
            test_size (float): Size of train test split.
            verbose (bool): verbose during model evaluation process if set to True.

        Returns:
            dict: A dictionary containing the trained model and metrics.
        """
        learner, best_params, best_threshold = model
        model = Model.get_model(learner, self.classification)
        final_model = clone(model)
        final_model.set_params(**best_params)
        final_model.best_threshold = best_threshold

        if "n_jobs" in final_model.get_params():
            final_model.set_params(n_jobs=n_jobs)

        train_df, test_df = resampler.split_train_test_df(
            df=df, seed=seed, test_size=test_size
        )

        X_train, y_train, X_test, y_test = resampler.split_x_y(
            train_df=train_df, test_df=test_df, sampling=sampling, factor=factor
        )
        if learner == "mlp" and self.mlp_training:
            train_df_h, test_df_h = resampler.split_train_test_df(
                df=train_df, seed=seed, test_size=test_size
            )

            X_train_h, y_train_h, X_val, y_val = resampler.split_x_y(
                train_df=train_df_h, test_df=test_df_h, sampling=sampling, factor=factor
            )
            _, final_model, _ = self.train_mlp(
                mlp_model=final_model,
                X_train=X_train_h,
                y_train=y_train_h,
                X_val=X_val,
                y_val=y_val,
                final=self.mlp_training,
            )
        else:
            final_model.fit(X_train, y_train)
        final_probs = get_probs(
            model=final_model, classification=self.classification, X=X_test
        )

        if (
            self.criterion == "f1"
            and final_probs is not None
            and np.any(final_probs)
            and best_threshold is not None
        ):
            final_predictions = (final_probs >= best_threshold).astype(int)
        else:
            final_predictions = final_model.predict(X_test)

        metrics = final_metrics(
            classification=self.classification,
            y=y_test,
            preds=final_predictions,
            probs=final_probs,
            threshold=best_threshold,
        )
        if verbose:
            unpacked_metrics = {
                k: round(v, 4) if isinstance(v, float) else v
                for k, v in metrics.items()
            }
            results = {
                "Learner": learner,
                "Tuning": "final",
                "HPO": self.hpo,
                "Criterion": self.criterion,
                **unpacked_metrics,
            }

            df_results = pd.DataFrame([results])
            pd.set_option("display.max_columns", None, "display.width", 1000)
            print("\nFinal Model Metrics Summary:\n", df_results)

        return {"model": final_model, "metrics": metrics}

__init__(classification, criterion, tuning, hpo, mlp_training=None, threshold_tuning=None)

Initializes the Trainer with classification type and criterion.

Source code in periomod/training/_trainer.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def __init__(
    self,
    classification: str,
    criterion: str,
    tuning: Optional[str],
    hpo: Optional[str],
    mlp_training: Optional[bool] = None,
    threshold_tuning: Optional[bool] = None,
) -> None:
    """Initializes the Trainer with classification type and criterion."""
    super().__init__(
        classification=classification,
        criterion=criterion,
        tuning=tuning,
        hpo=hpo,
        mlp_training=mlp_training,
        threshold_tuning=threshold_tuning,
    )

train(model, X_train, y_train, X_val, y_val)

Trains either an MLP model with custom logic or a standard model.

Parameters:

Name Type Description Default
model Any

The machine learning model to be trained.

required
X_train DataFrame

Training features.

required
y_train Series

Training labels.

required
X_val DataFrame

Validation features.

required
y_val Series

Validation labels.

required

Returns:

Name Type Description
Tuple Tuple[float, object, Union[float, None]]

The evaluation score, trained model, and the best threshold.

Source code in periomod/training/_trainer.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def train(
    self,
    model: Any,
    X_train: pd.DataFrame,
    y_train: pd.Series,
    X_val: pd.DataFrame,
    y_val: pd.Series,
) -> Tuple[float, object, Union[float, None]]:
    """Trains either an MLP model with custom logic or a standard model.

    Args:
        model (Any): The machine learning model to be trained.
        X_train (pd.DataFrame): Training features.
        y_train (pd.Series): Training labels.
        X_val (pd.DataFrame): Validation features.
        y_val (pd.Series): Validation labels.

    Returns:
        Tuple: The evaluation score, trained model, and the best threshold.
    """
    if isinstance(model, MLPClassifier) and self.mlp_training:
        score, model, best_threshold = self.train_mlp(
            mlp_model=model,
            X_train=X_train,
            y_train=y_train,
            X_val=X_val,
            y_val=y_val,
            final=self.mlp_training,
        )
    else:
        model.fit(X_train, y_train)
        probs = get_probs(model=model, classification=self.classification, X=X_val)
        best_threshold = None

        if self.classification == "binary" and (
            self.tuning == "cv" or self.hpo == "hebo"
        ):
            score, _ = self.evaluate(y=y_val, probs=probs, threshold=False)
        else:
            score, best_threshold = self.evaluate(
                y=y_val, probs=probs, threshold=self.threshold_tuning
            )

    return score, model, best_threshold

train_final_model(df, resampler, model, sampling, factor, n_jobs, seed, test_size, verbose=True)

Trains the final model.

Parameters:

Name Type Description Default
df DataFrame

The dataset used for model evaluation.

required
resampler Resampler

Resampling class.

required
model sklearn estimator

The machine learning model used for evaluation.

required
sampling str

The type of sampling to apply.

required
factor float

The factor by which to upsample or downsample.

required
n_jobs int

The number of parallel jobs to run for evaluation.

required
seed int

Seed for splitting.

required
test_size float

Size of train test split.

required
verbose bool

verbose during model evaluation process if set to True.

True

Returns:

Name Type Description
dict dict

A dictionary containing the trained model and metrics.

Source code in periomod/training/_trainer.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
def train_final_model(
    self,
    df: pd.DataFrame,
    resampler: Resampler,
    model: Tuple,
    sampling: Optional[str],
    factor: Optional[float],
    n_jobs: int,
    seed: int,
    test_size: float,
    verbose: bool = True,
) -> dict:
    """Trains the final model.

    Args:
        df (pandas.DataFrame): The dataset used for model evaluation.
        resampler: Resampling class.
        model (sklearn estimator): The machine learning model used for evaluation.
        sampling (str): The type of sampling to apply.
        factor (float): The factor by which to upsample or downsample.
        n_jobs (int): The number of parallel jobs to run for evaluation.
        seed (int): Seed for splitting.
        test_size (float): Size of train test split.
        verbose (bool): verbose during model evaluation process if set to True.

    Returns:
        dict: A dictionary containing the trained model and metrics.
    """
    learner, best_params, best_threshold = model
    model = Model.get_model(learner, self.classification)
    final_model = clone(model)
    final_model.set_params(**best_params)
    final_model.best_threshold = best_threshold

    if "n_jobs" in final_model.get_params():
        final_model.set_params(n_jobs=n_jobs)

    train_df, test_df = resampler.split_train_test_df(
        df=df, seed=seed, test_size=test_size
    )

    X_train, y_train, X_test, y_test = resampler.split_x_y(
        train_df=train_df, test_df=test_df, sampling=sampling, factor=factor
    )
    if learner == "mlp" and self.mlp_training:
        train_df_h, test_df_h = resampler.split_train_test_df(
            df=train_df, seed=seed, test_size=test_size
        )

        X_train_h, y_train_h, X_val, y_val = resampler.split_x_y(
            train_df=train_df_h, test_df=test_df_h, sampling=sampling, factor=factor
        )
        _, final_model, _ = self.train_mlp(
            mlp_model=final_model,
            X_train=X_train_h,
            y_train=y_train_h,
            X_val=X_val,
            y_val=y_val,
            final=self.mlp_training,
        )
    else:
        final_model.fit(X_train, y_train)
    final_probs = get_probs(
        model=final_model, classification=self.classification, X=X_test
    )

    if (
        self.criterion == "f1"
        and final_probs is not None
        and np.any(final_probs)
        and best_threshold is not None
    ):
        final_predictions = (final_probs >= best_threshold).astype(int)
    else:
        final_predictions = final_model.predict(X_test)

    metrics = final_metrics(
        classification=self.classification,
        y=y_test,
        preds=final_predictions,
        probs=final_probs,
        threshold=best_threshold,
    )
    if verbose:
        unpacked_metrics = {
            k: round(v, 4) if isinstance(v, float) else v
            for k, v in metrics.items()
        }
        results = {
            "Learner": learner,
            "Tuning": "final",
            "HPO": self.hpo,
            "Criterion": self.criterion,
            **unpacked_metrics,
        }

        df_results = pd.DataFrame([results])
        pd.set_option("display.max_columns", None, "display.width", 1000)
        print("\nFinal Model Metrics Summary:\n", df_results)

    return {"model": final_model, "metrics": metrics}

train_mlp(mlp_model, X_train, y_train, X_val, y_val, final=False, tol=0.0001, n_iter_no_change=5)

Trains MLPClassifier with early stopping and evaluates performance.

Applies evaluation for both binary and multiclass classification.

Parameters:

Name Type Description Default
mlp_model MLPClassifier

The MLPClassifier to be trained.

required
X_train DataFrame

Training features.

required
y_train Series

Training labels.

required
X_val DataFrame

Validation features.

required
y_val Series

Validation labels.

required
final bool

Flag for final model training.

False
tol float

Tolerance for improvement. Defaults to 0.0001.

0.0001
n_iter_no_change int

Iterations without improvement in criterion for early stopping. Defaults to 5.

5

Returns:

Name Type Description
Tuple Tuple[float, MLPClassifier, Union[float, None]]

Best validation score, trained MLPClassifier, and optimal threshold (None for multiclass or if criterion is "brier_score").

Source code in periomod/training/_trainer.py
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def train_mlp(
    self,
    mlp_model: MLPClassifier,
    X_train: pd.DataFrame,
    y_train: pd.Series,
    X_val: pd.DataFrame,
    y_val: pd.Series,
    final: bool = False,
    tol: float = 0.0001,
    n_iter_no_change: int = 5,
) -> Tuple[float, MLPClassifier, Union[float, None]]:
    """Trains MLPClassifier with early stopping and evaluates performance.

    Applies evaluation for both binary and multiclass classification.

    Args:
        mlp_model (MLPClassifier): The MLPClassifier to be trained.
        X_train (pd.DataFrame): Training features.
        y_train (pd.Series): Training labels.
        X_val (pd.DataFrame): Validation features.
        y_val (pd.Series): Validation labels.
        final (bool): Flag for final model training.
        tol (float): Tolerance for improvement. Defaults to 0.0001.
        n_iter_no_change (int): Iterations without improvement in criterion for
            early stopping. Defaults to 5.

    Returns:
        Tuple: Best validation score, trained MLPClassifier, and optimal threshold
            (None for multiclass or if criterion is "brier_score").
    """
    best_val_score = (
        -float("inf") if self.criterion in ["f1", "macro_f1"] else float("inf")
    )
    best_threshold = None
    no_improvement_count = 0

    for _ in range(mlp_model.max_iter):
        mlp_model.partial_fit(X_train, y_train, classes=np.unique(y_train))

        probs = get_probs(
            model=mlp_model, classification=self.classification, X=X_val
        )
        if self.classification == "binary":
            if final or (self.tuning == "cv" or self.hpo == "hebo"):
                score, _ = self.evaluate(y=y_val, probs=probs, threshold=False)
        else:
            score, best_threshold = self.evaluate(
                y=y_val, probs=probs, threshold=self.threshold_tuning
            )

        if self.criterion in ["f1", "macro_f1"]:
            improvement = score > best_val_score + tol
        else:
            improvement = score < best_val_score - tol

        if improvement:
            best_val_score = score
            no_improvement_count = 0
        else:
            no_improvement_count += 1

        if no_improvement_count >= n_iter_no_change:
            break

    return best_val_score, mlp_model, best_threshold