RandomSearchTuner
Bases: BaseTuner
Random Search hyperparameter tuning class.
This class performs hyperparameter tuning using random search, supporting both holdout and cross-validation (CV) tuning methods.
Inherits
BaseTuner
: Provides a framework for implementing HPO strategies, including shared evaluation and logging functions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
classification
|
str
|
The type of classification ('binary' or 'multiclass'). |
required |
criterion
|
str
|
The evaluation criterion (e.g., 'f1', 'brier_score'). |
required |
tuning
|
str
|
The type of tuning ('holdout' or 'cv'). |
required |
hpo
|
str
|
The hyperparameter optimization method, default is 'rs'. |
'rs'
|
n_configs
|
int
|
Number of configurations to evaluate. Defaults to 10. |
10
|
n_jobs
|
int
|
Number of parallel jobs for model training. Defaults to 1. |
1
|
verbose
|
bool
|
Whether to print detailed logs during optimization. Defaults to True. |
True
|
trainer
|
Optional[Trainer]
|
Trainer instance for model training. |
None
|
mlp_training
|
bool
|
Enables MLP-specific training with early stopping. |
True
|
threshold_tuning
|
bool
|
Enables threshold tuning for binary classification when the criterion is "f1". |
True
|
Attributes:
Name | Type | Description |
---|---|---|
classification |
str
|
Type of classification ('binary' or 'multiclass'). |
criterion |
str
|
Performance criterion for optimization ('f1', 'brier_score' or 'macro_f1'). |
tuning |
str
|
Tuning approach ('holdout' or 'cv'). |
hpo |
str
|
Hyperparameter optimization method (default is 'rs'). |
n_configs |
int
|
Number of configurations to evaluate. |
n_jobs |
int
|
Number of parallel jobs for training. |
verbose |
bool
|
Flag to enable detailed logs during optimization. |
mlp_training |
bool
|
Enables MLP training with early stopping. |
threshold_tuning |
bool
|
Enables threshold tuning if criterion is 'f1'. |
trainer |
Trainer
|
Trainer instance for model evaluation. |
Methods:
Name | Description |
---|---|
holdout |
Optimizes hyperparameters using random search for holdout validation. |
cv |
Optimizes hyperparameters using random search with cross-validation. |
Example
trainer = Trainer(
classification="binary",
criterion="f1",
tuning="cv",
hpo="rs",
mlp_training=True,
threshold_tuning=True,
)
tuner = RandomSearchTuner(
classification="binary",
criterion="f1",
tuning="cv",
hpo="rs",
n_configs=15,
n_jobs=4,
verbose=True,
trainer=trainer,
mlp_training=True,
threshold_tuning=True,
)
# Running holdout-based tuning
best_params, best_threshold = tuner.holdout(
learner="rf",
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val
)
# Running cross-validation tuning
best_params, best_threshold = tuner.cv(
learner="rf",
outer_splits=cross_val_splits
)
Source code in periomod/tuning/_randomsearch.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
__init__(classification, criterion, tuning, hpo='rs', n_configs=10, n_jobs=1, verbose=True, trainer=None, mlp_training=True, threshold_tuning=True)
¶
Initialize RandomSearchTuner.
Source code in periomod/tuning/_randomsearch.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
cv(learner, outer_splits, racing_folds)
¶
Perform cross-validation with optional racing and hyperparameter tuning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
learner
|
str
|
The machine learning model to evaluate. |
required |
outer_splits
|
List[Tuple[DataFrame, DataFrame]]
|
List of training and validation splits. |
required |
racing_folds
|
int or None
|
Number of folds for racing; None uses all folds. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
Tuple[dict, Union[float, None]]
|
Best hyperparameters, and optimal threshold (if applicable). |
Source code in periomod/tuning/_randomsearch.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
holdout(learner, X_train, y_train, X_val, y_val)
¶
Perform random search on the holdout set for binary and multiclass .
Parameters:
Name | Type | Description | Default |
---|---|---|---|
learner
|
str
|
The machine learning model used for evaluation. |
required |
X_train
|
DataFrame
|
Training features for the holdout set. |
required |
y_train
|
Series
|
Training labels for the holdout set. |
required |
X_val
|
DataFrame
|
Validation features for the holdout set. |
required |
y_val
|
Series
|
Validation labels for the holdout set. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
Tuple[Dict[str, Union[float, int]], Union[float, None]]
|
|
Source code in periomod/tuning/_randomsearch.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|